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This paper examines generalised forms of semi-active switching control in comparison

to the sky-hook semi-active controller. A switching time controller is proposed and

analysed, in order to determine the optimal performance, with regard to displacement

transmissibility, of semi-active switching control. In addition, the model is also used to

then derived for the optimal switching times. A generalised form of linear switching

surface controller is then presented. It is demonstrated that this controller can produce

near optimal performance.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Semi-active dampers are a class of energy dissipating device for which the damping may be controlled in real-time.
This is achieved by either altering the properties of the damping fluid, as is the case for electro- and magneto-rheological
dampers [1], or by actuating mechanical components of the damper, an example of which is a variable orifice damper.
Semi-active damping, as a method of vibration isolation, has been applied to many mechanical and civil engineering
systems, see for example [2–7] and references therein. It has been demonstrated to provide considerably improved
performance compared to vibration isolation through passive damping alone.

Approaches to the design of semi-active damping controllers can broadly be grouped into two forms. The first class
applies to systems which may be accurately described using low order models, such as automotive suspension systems,
for which simple pragmatic control approaches, based on reasoned physical argument, are often employed, for example
[4,8–10,5,11].

As the complexity of a system increases it becomes difficult to generate semi-active control policies based on intuitive
logic. Consequently for this second class of system, examples of which include cables, buildings and bridges, it is common
for modified forms of active control design to be applied. A common example of this class of semi-active control is termed
clipped-optimal control [12,9]. This employs conventional linear-quadratic regulator or linear-quadratic gaussian optimal
control design based on linear system models, with the addition of saturation limits due to the physical constraints on the
force that may be generated by the semi-active damper. This semi-active design approach has been applied to a number of
civil engineering structures, for example see [13–18].

This paper is concerned with the first class of semi-active controller design. The most common form of control in this
class is called sky-hook control, which is a control policy that can be applied when a semi-active damper is connected
directly to a mass that is to be isolated. The sky-hook controller acts to increase damping when the damping force is acting
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to dissipate energy from the mass. This paper seeks, through analysis of the sky-hook controller, to generalise this class of
semi-active control in order to improve performance and better understand the mechanics that determine the optimality
of the control design.

Firstly a review of a sky-hook control law and its behaviour when applied to a single degree of freedom, base excited
suspension system is presented. A generalised form of switching control based on predetermined switching times is then
proposed. Through simulation of this controller, the optimal performance, with regard to minimising displacement
transmissibility, of this class of semi-active control is determined. The sky-hook controller is compared to these results in
order to assess the optimality of the sky-hook switching conditions. An analytical solution for the optimal switching times,
based on a harmonic balance of switching controlled system, is then presented. It is then shown how the sky-hook
controller may be considered to be a specific case of a generalised form of state-dependent, linear switching surface
controller. Through simulation, optimal switching surfaces are plotted and compared to the sky-hook surfaces. It is
demonstrated numerically that, over a range of frequencies, the optimal switching surfaces may be approximated using
the linear switching surface controller. The optimal switching surface control described in this paper is of appropriate form
to apply to any system where conventional sky-hook control is applied. Examples of potential applications include
automotive suspension systems [10] and seat suspensions [2].

The main technical novelty of this paper concerns the consideration of the common sky-hook semi-active controller [8]
as a specific case of a more generalised form and the identification of the optimal case of this general form (in terms of
optimal switching times and surfaces).
2. Sky-hook control

This paper will consider the semi-active isolation of a single degree-of-freedom base excited system such as that shown
in Fig. 1(a), where m is the mass to be isolated, k is the suspension stiffness, c is a semi-active damper, x is the mass
displacement and r is the base displacement. The system is harmonically excited at frequency, O, and displacement
amplitude, D, such that r¼DsinOt. Using the standard normalised parameters; natural frequency, on ¼

ffiffiffiffiffiffiffiffiffiffi
k=m

p
, and

damping ratio, z¼ c=ð2
ffiffiffiffiffiffiffi
km
p

Þ, the equation of motion of the system may be written as follows:

€xþ2zonð _x � _rÞþo2
nðx� rÞ ¼ 0: (1)

A common strategy for semi-active isolation of a such a system, proposed by Karnopp et al. [8] is to control the damper
so that it emulates the behaviour of an idealised sky-hook system. Such a system, as shown in Fig. 1(b), features an
inertially grounded passive damper, csky, connected to the mass to be isolated, providing a damping force that is always
resistant to the mass’s velocity. A commonly used semi-active approximation of the sky-hook system, often referred to as
on–off sky-hook control, is to set the damping to a high level when the damping force is dissipative with regard to the
kinetic energy of the mass and to set the damping to a low level otherwise. For the system shown in Fig. 1(a), this
corresponds to increased damping when the damper velocity and absolute mass velocity are of the same sign. An on–off
sky-hook control law for this system may be expressed as follows, where zh and zl denote high and low damping ratios,
respectively,

z¼
zh; _xð _x � _rÞ40;

zl; else:

(
(2)
m

k
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r
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Fig. 1. Mechanical models of (a) semi-active base excited suspension system and (b) idealised sky-hook system.
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The sky-hook form of control law can be susceptible to chatter [4]. This occurs when, upon switching from high to low
damping at _x ¼ 0, the spring force is of opposite sign and of greater magnitude than the low damping force. Under this
condition, the net force on the mass will change direction upon switching to the low damping state, pushing the velocity
back toward zero and consequently the low to high switching. This results in rapid switching between the high and low
damping levels until the system states are such that the low damping force is of greater magnitude than the spring force.
This phenomenon is typically associated with large differences between the high and low damping values. This study will
be limited to values of damping for which chattering does not occur.

A typical plot of displacement transmissibility is shown in Fig. 2, from which it can be seen that the sky-hook controller
performs better than passive damping at lower frequency but at higher frequency produces higher transmissibility than
the low level passive damping. From this it can be inferred that the sky-hook controller must be a sub-optimal form of
on–off semi-active control as it fails locate the lower amplitude solution provided by the always off state.

As is clear from Eq. (2), the sky-hook controller switches damping levels at the zero crossings of the mass and damper
velocities. These switching conditions can be considered as two switching surfaces of _x ¼ 0 and _x � _r ¼ 0 and can be
illustrated in a plane of system velocities as shown in Fig. 3. The shaded region of this figure corresponds to that in which
the damping force is dissipative with regard to the kinetic energy of the mass and is the region within which the sky-hook
control law increases damping.
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Fig. 2. Transmissibility of passively damped and sky-hook systems for zh ¼ 2 and zl ¼ 0:3: F passive damping z¼ zl , 2 2 2 passive damping z¼ zh ,

2 �2 �2 on–off sky-hook control.

Fig. 3. Illustration semi-active switching surfaces of sky-hook controller.
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The function of these switching surfaces can be seen by plotting the steady-state system velocities within this plane, an
example of which is shown in Fig. 4, in which the high to low switching states are denoted by circles and the low to high
switching states denoted by crosses. At each frequency the velocity trajectory forms a closed orbit, these orbits move
outwards from the centre with increasing frequency. It can be seen that in the steady-state, the velocity trajectory crosses
each of the switching surfaces once every half period of excitation. Consequently, at a given frequency, the damping level is
switched from high to low and back at fixed times every half period.

By generalising the controller switching conditions, in terms of switching times and switching surfaces, this study seeks
to identify an optimal form of semi-active switching controller and understand the mechanics which cause the optimal
solution to differ from the sky-hook control scheme.

3. Switching time control

In this section we will examine the response of a generalised form of semi-active switching control, with arbitrarily
defined switching times. The controller we propose is illustrated in Fig. 5, where the high to low switching time is denoted
by t1 and the low to high switching time by t2. Analysis of this generalised controller form, for all permissible switching
times, will allow the optimal response of this class of switching controller to be determined. This may then be compared
with the response of the sky-hook controller, in which t1 and t2 are governed by the conditions given in Eq. (2), in order to
assess the optimality of the sky-hook switching conditions.

3.1. Numerical analysis

Parameters are introduced for frequency normalised width, t , and centre of the damping peak, t0. These are illustrated
in Fig. 5 and relate to the switching times as follows:

t1 ¼
ðt0 � t=2þpÞ=O; t0 � t=2o0;

ðt0 � t=2Þ=O; else

(
(3)

and

t2 ¼
ðt0þt=2� pÞ=O; t0þt=24p;
ðt0þt=2Þ=O; else:

(
(4)

The parameters, t0 and t , can have values between the limits of zero and p, and together can describe the system for all
permissible switching times. The motivation for introducing these parameters is to aid subsequent analysis and allow
results to be presented in a clearer form.



ARTICLE IN PRESS

Fig. 5. Illustration of switching times over an excitation period.
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Simulations are computed for a range of t0 and t values between the minimum and maximum values. Typical results are
shown in Fig. 6. The upper edge, t ¼ p, corresponds to the passive high damping response and the lower edge, t ¼ 0,
corresponds to the passive low damping response. The minimum steady-state displacement response is denoted by a
diamond and the sky-hook steady-state response is denoted by a circle. Note that presenting these contour plots for t and
t0 produces a continuous surface. If the results were presented in terms of t1 and t2, the surface would be discontinuous
along t1 ¼ t2, corresponding to the switch from high to low passive damping either side of the line.

These results show a single, clear minima, revealing the existence of distinct, optimal switching times at each
frequency. A general trend, present regardless of damping values, is the movement of the minima from high to low t values
with increasing frequency. This shows that to minimise transmissibility, the high damping level should be applied for
smaller proportions of the excitation period as frequency increases. An analogy may be drawn between this result and
optimisation of an equivalent passively damped system, which requires lower levels of damping with increasing frequency
to minimise transmissibility.

Below, and close to, the undamped natural frequency, the sky-hook switching conditions produce switching times very
close to optimal. However, as frequency increases, the sky-hook switching times can be seen to diverge from the optimal.
Most notably, the sky-hook controller results in larger t values than are optimal. This shows that essentially the sky-hook
switching conditions apply more damping than is necessary, to the detriment of control performance.

As the numerical results reveal the sky-hook controller to be sub-optimal, we now seek an analytical solution for the
optimal switching times.
3.2. Analytical optimisation

Frequency analysis of the system at optimal switching times, an example of which is shown in Fig. 7, reveals that
the response is dominated by the excitation frequency. This suggests that a harmonic balance (for example see [19]) at
the excitation frequency is a suitable method for the analytical solution of the switching time controlled system. This
technique is now applied to the system.

Defining, z¼ x� r, Eq. (1) may be rewritten as

€zþ2zðtÞon _zþo2
nz¼ � €r : (5)

Considering the displacement response only at the excitation frequency, z may be expressed as follows:

z� a1cosOtþb1sinOt: (6)

By substituting Eq. (6) into Eq. (5), multiplying by sinOt and integrating across an excitation period, the following
expression is obtained, noting the orthogonality condition that when integrated the sinOtcosOt terms are eliminated:

pðo2
n �O2

Þb1þ2onO2b1

Z 2p=O

0
zðtÞcosOtsinOt dt � 2onO2a1

Z 2p=O

0
zðtÞsin2 Ot dt¼DpO2: (7)

For t24t1, the damping applied by the switching time controller may be expressed as follows, where t is the modulo of
time, t, and a half excitation period, p=O

z¼
zh; t1otot2;

zl; else:

(
(8)
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By substituting the switching controller from Eq. (8) into Eq. (7) and evaluating the integrals we obtain

2on O
zh � zl

p
ðt2 � t1Þþzlþ

zh � zl

2p
sin 2Ot1 � sin 2Ot2ð Þ

� �
a1

þ �ðo2
n �O2

Þ=O� 2on
zh � zl

p
ðsin2 Ot2 � sin2 Ot1Þ

� �� �
b1 ¼ � DO: (9)

Similarly, substituting Eqs. (6) and (8) into Eq. (5), multiplying by cosOt and integrating across an excitation period,
produces the following:

ðo2
n �O2

Þ=O� 2on
zh � zl

p
ðsin2 Ot2 � sin2 Ot1Þ

� �
a1

þ2on O
zh � zl

p ðt2 � t1Þþzlþ
zh � zl

2p sin 2Ot2 � sin 2Ot1ð Þ

� �
b1 ¼ 0: (10)

Using Eqs. (3) and (4), Eqs. (9) and (10) may be rewritten as functions of t and t0, giving

2on zlþ
zh � zl

p ðt � sin tcos 2t0Þ

� �
a1 � ðo2

n �O2
Þ=Oþ2on

zh � zl

p sin tsin 2t0

� �
b1 ¼ �DO (11)
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and

ðo2
n �O2

Þ=O� 2on
zh � zl

p sin tsin 2t0

� �
a1þ2on zlþ

zh � zl

p ðtþsin tcos 2t0Þ

� �
b1 ¼ 0: (12)

By solving Eqs. (11) and (12), the following expressions for a1 and b1 are obtained:

a1 ¼

�2DonO3 zlþ
zh � zl

p ðtþsin tcos 2t0Þ

� �

4o2
nO

2 zh � zl

p tþzl

� �2

�
zh � zl

p

� �2

sin2 t

 !
þðo2

n �O2
Þ
2

(13)

and

b1 ¼

DO2 o2
n �O2

� 2onO
zh � zl

p
sin tsin 2t0

� �

4o2
nO

2 zh � zl

p
tþzl

� �2

�
zh � zl

p

� �2

sin2 t

 !
þðo2

n �O2
Þ
2

: (14)

The steady state displacement amplitude of x, x, may be written as follows:

x ¼ ða2
1þðb1þDÞ2Þ1=2: (15)

Substituting Eqs. (13) and (14) into Eq. (15) produces the following approximate solution for the steady-state displacement
response of the switching time controlled system

x2
¼

�2DonO3 zlþ
zh � zl

p ðtþsin tcos 2t0Þ

� �

4o2
nO

2 zh � zl

p tþzl

� �2

�
zh � zl

p

� �2

sin2 t

 !
þðo2

n �O2
Þ
2

0
BBBB@

1
CCCCA

2

þ

DO2 o2
n �O2

� 2onO
zh � zl

p
sin tsin 2t0

� �

4o2
nO

2 zh � zl

p
tþzl

� �2

�
zh � zl

p

� �2

sin2 t

 !
þðo2

n �O2
Þ
2

þD

0
BBBB@

1
CCCCA

2

: (16)

A similar derivation may be performed for t14t2, however, due to the definitions of the switching times in Eqs. (3) and (4),
the solution reached is the same as that found for the t24t1 case.

When compared to the numerical solution of the switching controlled system, this analytical approximation is seen to
be accurate at higher frequency, but is less accurate close to and below the undamped natural frequency of the system.
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Typical results are shown in Figs. 8 and 9, in which the numerical minima is denoted by a diamond, the analytically
approximated minima denoted by a cross and the sky-hook solution by a circle. At low frequency the analytical minima is
further from the actual minima than the sky-hook solution. At higher frequencies, where the sky-hook controller has been
seen to perform poorly, the analytical minima is closer to the actual minima than the sky-hook solution.

By differentiating Eq. (16) with respect to t0 and equating the zero, the following expression for the optimal centre of
damping peak, t0opt , as a function of damping width, t , is obtained:

t0opt ¼ �
1

2
tan�1

o2
n �O2

4O2
þ

zh � zl

p

� �2

ðt
2
� sin2 tÞþzl 2

zh � zl

p tþzl

� �
O

2on

zh � zl

p
tþzl

� �
0
BBB@

1
CCCA: (17)
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By substituting Eq. (17) in Eq. (16), an algebraic function for x is obtained which is a function of a single control design
parameter, t . It is not possible to obtain an explicit analytical solution for the t value that minimising this function,
however, an optimal t value can be obtained by numerically minimising the function with regard to t between the lower
and upper bounds of 0 and p, respectively.

Plots comparing the transmissibility produced by the optimal and sky-hook switching times over a range of frequencies
and damping values are shown in Fig. 10. These transmissibility plots show the performance of the sky-hook controller to
be very close to that of the optimal controller below the undamped natural frequency. As frequency increases, the
performance of the sky-hook controller diverges from the optimal.

In addition the analytical optimal solution based on Eq. (16) is shown (dashed line). It can be seen that this agrees
excellently with the numerical optimal solution at frequencies above the natural frequency with a slight divergence at
frequencies below the natural frequency. Note that the numerical optimal solution is plotted over a smaller frequency
range in order for the analytical optimal solution to be more clearly visible.
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Fig. 11. Illustration of semi-active switching surfaces for generalised switching surface controller.
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4. Switching surface control

The selection of parameters for the switching time controller discussed in the previous section requires knowledge of
the frequency and phase of excitation. The appeal of the sky-hook form of control law is its simple form, use of readily
measurable states and no requirement for explicit knowledge of the excitation. We seek to obtain a semi-active switching
controller that is closer to optimal than sky-hook yet retains the practical characteristics of the sky-hook control form.

As discussed in Section 2 and illustrated in Fig. 3, the sky-hook control law may be thought of as a pair of switching
surfaces. Considering the sky-hook controller in this manner naturally presents the question as to whether better isolation
can be achieved by altering these switching surfaces.

For a switching surface to provide the same transmissibility for a given frequency regardless of amplitude it must be
linear. A generalised form of semi-active switching surface control is expressed in Eq. (18), where a and b are the gradients
of the linear surfaces. This controller is illustrated with-in the velocity plane in Fig. 11. The sky-hook controller is a specific
case of this generalised form where b¼ 1 and a¼ 0:

z¼
zh; ð _xþa_rÞð _x � b_rÞ40;

zl; else:

(
(18)

For b¼ 1, the switching surface controller described by Eq. (18) is equivalent to that proposed by Verros et al. [20], in
which the gradient of the second switching surface is designed to emulate the behaviour of specific sky-hook damping
coefficients.

The numerical optimisation analysis in Section 3 may be extended to examine the nature of optimal switching surfaces.
The steady-state velocities of the optimal switching time controlled system are shown in Fig. 12 for a number of excitation
frequencies. The trajectories move outward from the centre with increasing frequency. The states at the high to low
switching times are denoted by circles and the states at the low to high switching times are denoted by crosses. By plotting
at multiple frequencies, these optimal switching states form optimal switching surfaces within the velocity plane.

These plots reveal that the optimal high to low switching surface is insensitive to damping values and is very close to
the sky-hook switching surface of _x � _r ¼ 0, corresponding to a b value of 1. The optimal low to high switching surface,
however, differs significantly from the sky-hook surface. The optimal surface is nonlinear and appears strongly dependant
on the damping values. Below the natural frequency, the optimal switching surface is close to the sky-hook surface of _x ¼ 0,
as is consistent with results from the switching times analysis. As frequency increases, the gradient of the surface diverges
from that of the sky-hook surface.

As this optimal switching surface is nonlinear, it is not possible to define a low to high switching control surface that is
optimal regardless of amplitude. However, as is illustrated in Fig. 13, over limited ranges of frequencies, the optimal
surface may be approximated as linear.

Fig. 14 shows transmissibility plots of the switching surface controller expressed in Eq. (18), for b¼ 1 and varying
values of a. These plots show that it is possible to achieve isolation very close to optimal using a linear switching surface
controller. From the low transmissibility obtained using a range of a values, it appears that amplitude trajectory is quite
insensitive to switching state close to the optimal surfaces. This aids the process of control parameter selection by
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Fig. 12. Steady state velocities and switching states of optimal switching time controller over the frequency range O=on ¼ 0:124 for (a) zh ¼ 1:5, zl ¼ 0:5;

(b) zh ¼ 2, zl ¼ 1: J high to low switching, � low to high switching.
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Fig. 13. Steady state switching states of optimal switching time controller and linear switching surface approximations over the frequency range

O=on ¼ 0:124 for (a) zh ¼ 1:5, zl ¼ 0:5, a¼ 1, b¼ 1; (b) zh ¼ 2, zl ¼ 1, a¼ 2, b¼ 1: J high to low switching, � low to high switching.
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providing relatively large tolerances. Over the range of damping values examined, an a value of 1 consistently produced
isolation close to optimal, representing an improvement over the sky-hook controller (in which a¼ 0) especially at
frequencies above the natural frequency. It is therefore suggested that this value is an appropriate starting point for
parameter selection.
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Fig. 14. Transmissibility plots of generalised switching surface controller and optimal solution for (a) zh ¼ 1:5 and zl ¼ 0:5; (b) zh ¼ 2 and zl ¼ 1; (c) zh ¼ 2

and zl ¼ 0:3: a¼ 0 (sky-hook), 2 �2 �2 a¼ 0:5, 2 2 2 a¼ 1, � � � � � � a¼ 10, F optimal.
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5. Conclusions

This paper has examined the form and behaviour of a sky-hook, semi-active control law when applied to a single degree
of freedom, base isolating suspension system.

When the system is harmonically excited, in the steady-state, the sky-hook controller switches damping levels at two
distinct times every half period of excitation.

By proposing and analysing a generalised switching controller with arbitrarily defined switching times, the optimality
of the sky-hook switching conditions, with regard to minimising displacement transmissibility, is assessed. It is found that
below the undamped natural frequency of the system, the sky-hook controller is close to optimal but diverges from the
optimal switching times with increasing frequency.

An analytical solution is presented for the optimal switching times, based on a harmonic balance of the switching
controller. For higher frequencies, where sky-hook control has been shown to be sub-optimal, the analytically
approximated switching times are very close to optimal.

The sky-hook controller is then considered as consisting of two switching surfaces. Plotting the system states at the
optimal switching times for multiple frequencies produces optimal switching surfaces. This reveals one of the sky-hook
surfaces to be very close to optimal. The other optimal switching surface is shown to be nonlinear and dependent on
damping values. A generalised form of linear switching surface control is presented. It is shown that, through appropriate
parameter selection (a recommended guideline being a¼ 1), this controller form, which retains the desirable practical
attributes of sky-hook control, can achieve performance very close to optimal.
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